On the distribution of bids for construction contract auctions
Pablo Ballesteros-Pérez and
Martin Skitmore
Construction Management and Economics, 2017, vol. 35, issue 3, 106-121
Abstract:
The statistical distribution representing bid values constitutes an essential part of many auction models and has involved a wide range of assumptions, including the Uniform, Normal, Lognormal and Weibull densities. From a modelling point of view, its goodness is defined by how well it enables the probability of a particular bid value to be estimated – a past bid for ex-post analysis and a future bid for ex-ante (forecasting) analysis. However, there is no agreement to date of what is the most appropriate form and empirical work is sparse. Twelve extant construction data-sets from four continents over different time periods are analysed in this paper for their fit to a variety of candidate statistical distributions assuming homogeneity of bidders (ID not known). The results show there is no one single fit-all distribution, but that the 3p Log-Normal, Fréchet/2p Log-Normal, Normal, Gamma and Gumbel generally rank the best ex-post and the 2p Log-Normal, Normal, Gamma and Gumbel the best ex-ante – with ex-ante having around three to four times worse fit than ex-post. Final comments focus on the results relating to the third and fourth standardized moments of the bids and a post hoc rationalization of the empirical outcome of the analysis.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/01446193.2016.1247972 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:conmgt:v:35:y:2017:i:3:p:106-121
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RCME20
DOI: 10.1080/01446193.2016.1247972
Access Statistics for this article
Construction Management and Economics is currently edited by Will Hughes
More articles in Construction Management and Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().