A GRAS VARIANT SOLVING FOR MINIMUM INFORMATION LOSS
Andre Lemelin
Economic Systems Research, 2009, vol. 21, issue 4, 399-408
Abstract:
The fundamental idea in Junius and Oosterhaven (2003) is to break down the information contained in the a priori data into two parts: algebraic signs, and absolute values. This approach is well grounded in information theory, and provides a basis on which to solve the problem of adjusting matrices with negative entries. However, Junius and Oosterhaven (2003) have formulated a target function that is not equivalent to the Kullback and Leibler (1951) cross-entropy measure, and so is not a representation of the minimum information loss principle. Neither is the alternative target function proposed by Lenzen et al. (2007). This paper develops the exact Kullback and Leibler cross-entropy measure. In addition, following the constrained optimization approach, this paper applies the same principle to solve adjustment problems where row-sums, column-sums or both are constrained to zero.
Keywords: RAS matrix balancing; Negative entries; GRAS; Minimum cross-entropy (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/09535311003589310 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:ecsysr:v:21:y:2009:i:4:p:399-408
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CESR20
DOI: 10.1080/09535311003589310
Access Statistics for this article
Economic Systems Research is currently edited by Bart Los and Manfred Lenzen
More articles in Economic Systems Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().