EconPapers    
Economics at your fingertips  
 

Some Recent Developments in Econometric Inference

Arnold Zellner

Econometric Reviews, 2003, vol. 22, issue 2, 203-215

Abstract: Recent results in information theory, see Soofi (1996; 2001) for a review, include derivations of optimal information processing rules, including Bayes' theorem, for learning from data based on minimizing a criterion functional, namely output information minus input information as shown in Zellner (1988; 1991; 1997; 2002). Herein, solution post data densities for parameters are obtained and studied for cases in which the input information is that in (1) a likelihood function and a prior density; (2) only a likelihood function; and (3) neither a prior nor a likelihood function but only input information in the form of post data moments of parameters, as in the Bayesian method of moments approach. Then it is shown how optimal output densities can be employed to obtain predictive densities and optimal, finite sample structural coefficient estimates using three alternative loss functions. Such optimal estimates are compared with usual estimates, e.g., maximum likelihood, two-stage least squares, ordinary least squares, etc. Some Monte Carlo experimental results in the literature are discussed and implications for the future are provided.

Keywords: Econometric inference; Bayes' theorem; Information theory; Learning; Optimal estimation (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1081/ETC-120020463 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:22:y:2003:i:2:p:203-215

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1081/ETC-120020463

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2025-03-22
Handle: RePEc:taf:emetrv:v:22:y:2003:i:2:p:203-215