Economics at your fingertips  

Automatic Block-Length Selection for the Dependent Bootstrap

Dimitris Politis and Halbert White

Econometric Reviews, 2004, vol. 23, issue 1, 53-70

Abstract: We review the different block bootstrap methods for time series, and present them in a unified framework. We then revisit a recent result of Lahiri [Lahiri, S. N. (1999b). Theoretical comparisons of block bootstrap methods, Ann. Statist. 27:386-404] comparing the different methods and give a corrected bound on their asymptotic relative efficiency; we also introduce a new notion of finite-sample “attainable” relative efficiency. Finally, based on the notion of spectral estimation via the flat-top lag-windows of Politis and Romano [Politis, D. N., Romano, J. P. (1995). Bias-corrected nonparametric spectral estimation. J. Time Series Anal. 16:67-103], we propose practically useful estimators of the optimal block size for the aforementioned block bootstrap methods. Our estimators are characterized by the fastest possible rate of convergence which is adaptive on the strength of the correlation of the time series as measured by the correlogram.

Keywords: Bandwidth choice; Block bootstrap; Resampling; Subsampling; Time series; Variance estimation (search for similar items in EconPapers)
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (141) Track citations by RSS feed

Downloads: (external link) (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

Page updated 2019-04-20
Handle: RePEc:taf:emetrv:v:23:y:2004:i:1:p:53-70