Economics at your fingertips  

Bootstrap Tests of Nonnested Hypotheses: Some Further Results

Leslie Godfrey and João Santos Silva ()

Econometric Reviews, 2005, vol. 23, issue 4, 325-340

Abstract: Nonnested models are sometimes tested using a simulated reference distribution for the uncentred log likelihood ratio statistic. This approach has been recommended for the specific problem of testing linear and logarithmic regression models. The general asymptotic validity of the reference distribution test under correct choice of error distributions is questioned. The asymptotic behaviour of the test under incorrect assumptions about error distributions is also examined. In order to complement these analyses, Monte Carlo results for the case of linear and logarithmic regression models are provided. The finite sample properties of several standard tests for testing these alternative functional forms are also studied, under normal and nonnormal error distributions. These regression-based variable-addition tests are implemented using asymptotic and bootstrap critical values.

Keywords: Bootstrap; Nonnested hypotheses; Nonnormality (search for similar items in EconPapers)
Date: 2005
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

Page updated 2019-10-20
Handle: RePEc:taf:emetrv:v:23:y:2005:i:4:p:325-340