On Sample Skewness and Kurtosis
Yong Bao
Econometric Reviews, 2013, vol. 32, issue 4, 415-448
Abstract:
It is well documented in the literature that the sample skewness and excess kurtosis can be severely biased in finite samples. In this paper, we derive analytical results for their finite-sample biases up to the second order. In general, the bias results depend on the cumulants (up to the sixth order) as well as the dependency structure of the data. Using an AR(1) process for illustration, we show that a feasible bias-correction procedure based on our analytical results works remarkably well for reducing the bias of the sample skewness. Bias-correction works reasonably well also for the sample kurtosis under some moderate degree of dependency. In terms of hypothesis testing, bias-correction offers power improvement when testing for normality, and bias-correction under the null provides also size improvement. However, for testing nonzero skewness and/or excess kurtosis, there exist nonnegligible size distortions in finite samples and bias-correction may not help.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2012.690665 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:32:y:2013:i:4:p:415-448
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20
DOI: 10.1080/07474938.2012.690665
Access Statistics for this article
Econometric Reviews is currently edited by Dr. Essie Maasoumi
More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().