EconPapers    
Economics at your fingertips  
 

High-Order Conditional Quantile Estimation Based on Nonparametric Models of Regression

Carlos Martins-Filho, Feng Yao and Maximo Torero

Econometric Reviews, 2015, vol. 34, issue 6-10, 907-958

Abstract: We consider the estimation of a high order quantile associated with the conditional distribution of a regressand in a nonparametric regression model. Our estimator is inspired by Pickands (1975) where it is shown that arbitrary distributions which lie in the domain of attraction of an extreme value type have tails that, in the limit, behave as generalized Pareto distributions (GPD). Smith (1987) has studied the asymptotic properties of maximum likelihood (ML) estimators for the parameters of the GPD in this context, but in our paper the relevant random variables used in estimation are standardized residuals from a first stage kernel based nonparametric estimation. We obtain convergence in probability and distribution of the residual based ML estimator for the parameters of the GPD as well as the asymptotic distribution for a suitably defined quantile estimator. A Monte Carlo study provides evidence that our estimator behaves well in finite samples and is easily implementable. Our results have direct application in finance, particularly in the estimation of conditional Value-at-Risk, but other researchers in applied fields such as insurance will also find the results useful.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2014.956612 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:34:y:2015:i:6-10:p:907-958

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1080/07474938.2014.956612

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2025-03-22
Handle: RePEc:taf:emetrv:v:34:y:2015:i:6-10:p:907-958