High-Order Conditional Quantile Estimation Based on Nonparametric Models of Regression
Carlos Martins-Filho,
Feng Yao and
Maximo Torero
Econometric Reviews, 2015, vol. 34, issue 6-10, 907-958
Abstract:
We consider the estimation of a high order quantile associated with the conditional distribution of a regressand in a nonparametric regression model. Our estimator is inspired by Pickands (1975) where it is shown that arbitrary distributions which lie in the domain of attraction of an extreme value type have tails that, in the limit, behave as generalized Pareto distributions (GPD). Smith (1987) has studied the asymptotic properties of maximum likelihood (ML) estimators for the parameters of the GPD in this context, but in our paper the relevant random variables used in estimation are standardized residuals from a first stage kernel based nonparametric estimation. We obtain convergence in probability and distribution of the residual based ML estimator for the parameters of the GPD as well as the asymptotic distribution for a suitably defined quantile estimator. A Monte Carlo study provides evidence that our estimator behaves well in finite samples and is easily implementable. Our results have direct application in finance, particularly in the estimation of conditional Value-at-Risk, but other researchers in applied fields such as insurance will also find the results useful.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2014.956612 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:34:y:2015:i:6-10:p:907-958
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20
DOI: 10.1080/07474938.2014.956612
Access Statistics for this article
Econometric Reviews is currently edited by Dr. Essie Maasoumi
More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().