Empirical Likelihood in Causal Inference
Biao Zhang
Econometric Reviews, 2016, vol. 35, issue 2, 201-231
Abstract:
This paper discusses the estimation of average treatment effects in observational causal inferences. By employing a working propensity score and two working regression models for treatment and control groups, Robins et al. (1994, 1995) introduced the augmented inverse probability weighting (AIPW) method for estimation of average treatment effects, which extends the inverse probability weighting (IPW) method of Horvitz and Thompson (1952); the AIPW estimators are locally efficient and doubly robust. In this paper, we study a hybrid of the empirical likelihood method and the method of moments by employing three estimating functions, which can generate estimators for average treatment effects that are locally efficient and doubly robust. The proposed estimators of average treatment effects are efficient for the given choice of three estimating functions when the working propensity score is correctly specified, and thus are more efficient than the AIPW estimators. In addition, we consider a regression method for estimation of the average treatment effects when working regression models for both the treatment and control groups are correctly specified; the asymptotic variance of the resulting estimator is no greater than the semiparametric variance bound characterized by the theory of Robins et al. (1994, 1995). Finally, we present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2013.808490 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:35:y:2016:i:2:p:201-231
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20
DOI: 10.1080/07474938.2013.808490
Access Statistics for this article
Econometric Reviews is currently edited by Dr. Essie Maasoumi
More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().