EconPapers    
Economics at your fingertips  
 

Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models

Geert Mesters, Siem Jan Koopman and Marius Ooms

Econometric Reviews, 2016, vol. 35, issue 4, 659-687

Abstract: An exact maximum likelihood method is developed for the estimation of parameters in a non-Gaussian nonlinear density function that depends on a latent Gaussian dynamic process with long-memory properties. Our method relies on the method of importance sampling and on a linear Gaussian approximating model from which the latent process can be simulated. Given the presence of a latent long-memory process, we require a modification of the importance sampling technique. In particular, the long-memory process needs to be approximated by a finite dynamic linear process. Two possible approximations are discussed and are compared with each other. We show that an autoregression obtained from minimizing mean squared prediction errors leads to an effective and feasible method. In our empirical study, we analyze ten daily log-return series from the S&P 500 stock index by univariate and multivariate long-memory stochastic volatility models. We compare the in-sample and out-of-sample performance of a number of models within the class of long-memory stochastic volatility models.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2015.1031014 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:35:y:2016:i:4:p:659-687

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1080/07474938.2015.1031014

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2025-03-20
Handle: RePEc:taf:emetrv:v:35:y:2016:i:4:p:659-687