EconPapers    
Economics at your fingertips  
 

Semiparametric Sieve-Type Generalized Least Squares Inference

George Kapetanios and Zacharias Psaradakis

Econometric Reviews, 2016, vol. 35, issue 6, 951-985

Abstract: This article considers the problem of statistical inference in linear regression models with dependent errors. A sieve-type generalized least squares (GLS) procedure is proposed based on an autoregressive approximation to the generating mechanism of the errors. The asymptotic properties of the sieve-type GLS estimator are established under general conditions, including mixingale-type conditions as well as conditions which allow for long-range dependence in the stochastic regressors and/or the errors. A Monte Carlo study examines the finite-sample properties of the method for testing regression hypotheses.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2014.975639 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:35:y:2016:i:6:p:951-985

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1080/07474938.2014.975639

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2025-03-20
Handle: RePEc:taf:emetrv:v:35:y:2016:i:6:p:951-985