The Risk of James--Stein and Lasso Shrinkage
Bruce Hansen ()
Econometric Reviews, 2016, vol. 35, issue 8-10, 1456-1470
Abstract:
This article compares the mean-squared error (or ℓ 2 risk) of ordinary least squares (OLS), James--Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contrast the known risk bounds for these estimators, which shows that neither James--Stein nor Lasso uniformly dominates the other. We investigate the finite sample risk using a simple simulation experiment. We find that the risk of Lasso estimation is particularly sensitive to coefficient parameterization, and for a significant portion of the parameter space Lasso has higher mean-squared error than OLS. This investigation suggests that there are potential pitfalls arising with Lasso estimation, and simulation studies need to be more attentive to careful exploration of the parameter space.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2015.1092799 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:35:y:2016:i:8-10:p:1456-1470
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20
DOI: 10.1080/07474938.2015.1092799
Access Statistics for this article
Econometric Reviews is currently edited by Dr. Essie Maasoumi
More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().