Estimation of semi-varying coefficient models with nonstationary regressors
Kunpeng Li,
Degui Li,
Zhongwen Liang () and
Cheng Hsiao
Econometric Reviews, 2017, vol. 36, issue 1-3, 354-369
Abstract:
We study a semivarying coefficient model where the regressors are generated by the multivariate unit root I(1) processes. The influence of the explanatory vectors on the response variable satisfies the semiparametric partially linear structure with the nonlinear component being functional coefficients. A semiparametric estimation methodology with the first-stage local polynomial smoothing is applied to estimate both the constant coefficients in the linear component and the functional coefficients in the nonlinear component. The asymptotic distribution theory for the proposed semiparametric estimators is established under some mild conditions, from which both the parametric and nonparametric estimators are shown to enjoy the well-known super-consistency property. Furthermore, a simulation study is conducted to investigate the finite sample performance of the developed methodology and results.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2015.1114563 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:36:y:2017:i:1-3:p:354-369
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20
DOI: 10.1080/07474938.2015.1114563
Access Statistics for this article
Econometric Reviews is currently edited by Dr. Essie Maasoumi
More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().