EconPapers    
Economics at your fingertips  
 

An efficient integrated nonparametric entropy estimator of serial dependence

Yongmiao Hong, Xia Wang, Wenjie Zhang and Shouyang Wang

Econometric Reviews, 2017, vol. 36, issue 6-9, 728-780

Abstract: We propose an efficient numerical integration-based nonparametric entropy estimator for serial dependence and show that the new entropy estimator has a smaller asymptotic variance than Hong and White’s (2005) sample average-based estimator. This delivers an asymptotically more efficient test for serial dependence. In particular, the uniform kernel gives the smallest asymptotic variance for the numerical integration-based entropy estimator over a class of positive kernel functions. Moreover, the naive bootstrap can be used to obtain accurate inferences for our test, whereas it is not applicable to Hong and White’s (2005) sample averaging approach. A simulation study confirms the merits of our approach.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2017.1307564 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:36:y:2017:i:6-9:p:728-780

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1080/07474938.2017.1307564

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2025-03-31
Handle: RePEc:taf:emetrv:v:36:y:2017:i:6-9:p:728-780