EconPapers    
Economics at your fingertips  
 

Nonparametric Knn estimation with monotone constraints

Zheng Li, Guannan Liu and Qi Li

Econometric Reviews, 2017, vol. 36, issue 6-9, 988-1006

Abstract: The K-nearest-neighbor (Knn) method is known to be more suitable in fitting nonparametrically specified curves than the kernel method (with a globally fixed smoothing parameter) when data sets are highly unevenly distributed. In this paper, we propose to estimate a nonparametric regression function subject to a monotonicity restriction using the Knn method. We also propose using a new convergence criterion to measure the closeness between an unconstrained and the (monotone) constrained Knn-estimated curves. This method is an alternative to the monotone kernel methods proposed by Hall and Huang (2001), and Du et al. (2013). We use a bootstrap procedure for testing the validity of the monotone restriction. We apply our method to the “Job Market Matching” data taken from Gan and Li (2016) and find that the unconstrained/constrained Knn estimators work better than kernel estimators for this type of highly unevenly distributed data.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2017.1307904 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:36:y:2017:i:6-9:p:988-1006

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1080/07474938.2017.1307904

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2025-03-20
Handle: RePEc:taf:emetrv:v:36:y:2017:i:6-9:p:988-1006