EconPapers    
Economics at your fingertips  
 

A multivariate volatility vine copula model

E. C. Brechmann, Moritz Heiden and Y. Okhrin

Econometric Reviews, 2018, vol. 37, issue 4, 281-308

Abstract: This article proposes a dynamic framework for modeling and forecasting of realized covariance matrices using vine copulas to allow for more flexible dependencies between assets. Our model automatically guarantees positive definiteness of the forecast through the use of a Cholesky decomposition of the realized covariance matrix. We explicitly account for long-memory behavior by using fractionally integrated autoregressive moving average (ARFIMA) and heterogeneous autoregressive (HAR) models for the individual elements of the decomposition. Furthermore, our model incorporates non-Gaussian innovations and GARCH effects, accounting for volatility clustering and unconditional kurtosis. The dependence structure between assets is studied using vine copula constructions, which allow for nonlinearity and asymmetry without suffering from an inflexible tail behavior or symmetry restrictions as in conventional multivariate models. Further, the copulas have a direct impact on the point forecasts of the realized covariances matrices, due to being computed as a nonlinear transformation of the forecasts for the Cholesky matrix. Beside studying in-sample properties, we assess the usefulness of our method in a one-day-ahead forecasting framework, comparing recent types of models for the realized covariance matrix based on a model confidence set approach. Additionally, we find that in Value-at-Risk (VaR) forecasting, vine models require less capital requirements due to smoother and more accurate forecasts.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2015.1096695 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:37:y:2018:i:4:p:281-308

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1080/07474938.2015.1096695

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2025-03-31
Handle: RePEc:taf:emetrv:v:37:y:2018:i:4:p:281-308