EconPapers    
Economics at your fingertips  
 

Two-sample least squares projection

David Pacini

Econometric Reviews, 2019, vol. 38, issue 1, 95-123

Abstract: This article investigates the problem of making inference about the coefficients in the linear projection of an outcome variable y on covariates (x,z) when data are available from two independent random samples; the first sample contains information on only the variables (y,z), while the second sample contains information on only the covariates. In this context, the validity of existing inference procedures depends crucially on the assumptions imposed on the joint distribution of (y,z,x). This article introduces a novel characterization of the identified set of the coefficients of interest when no assumption (except for the existence of second moments) on this joint distribution is imposed. One finding is that inference is necessarily nonstandard because the function characterizing the identified set is a nondifferentiable (yet directionally differentiable) function of the data. The article then introduces an estimator and a confidence interval based on the directional differential of the function characterizing the identified set. Monte Carlo experiments explore the numerical performance of the proposed estimator and confidence interval.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2016.1222068 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:38:y:2019:i:1:p:95-123

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1080/07474938.2016.1222068

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2025-03-20
Handle: RePEc:taf:emetrv:v:38:y:2019:i:1:p:95-123