Forecasting energy futures volatility with threshold augmented heterogeneous autoregressive jump models
Fredj Jawadi,
Zied Ftiti () and
Waël Louhichi
Econometric Reviews, 2020, vol. 39, issue 1, 54-70
Abstract:
This study forecasts the volatility of two energy futures markets (oil and gas), using high-frequency data. We, first, disentangle volatility into continuous volatility and jumps. Second, we apply wavelet analysis to study the relationship between volume and the volatility measures for different horizons. Third, we augment the heterogeneous autoregressive (HAR) model by nonlinearly including both jumps and volume. We then propose different empirical extensions of the HAR model. Our study shows that oil and gas volatilities nonlinearly depend on public information (jumps), private information (continuous volatility), and trading volume. Moreover, our threshold augmented HAR model with heterogeneous jumps and continuous volatility outperforms HAR model in forecasting volatility.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2019.1690190 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:39:y:2020:i:1:p:54-70
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20
DOI: 10.1080/07474938.2019.1690190
Access Statistics for this article
Econometric Reviews is currently edited by Dr. Essie Maasoumi
More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().