# Robust inference in conditionally heteroskedastic autoregressions

*Rasmus Søndergaard Pedersen*

*Econometric Reviews*, 2020, vol. 39, issue 3, 244-259

**Abstract:**
We consider robust inference for an autoregressive parameter in a stationary linear autoregressive model with GARCH innovations. As the innovations exhibit GARCH, they are by construction heavy-tailed with some tail index κ. This implies that the rate of convergence as well as the limiting distribution of the least squares estimator depend on κ. In the spirit of Ibragimov and Müller (“t-statistic based correlation and heterogeneity robust inference”, Journal of Business & Economic Statistics, 2010, vol. 28, pp. 453–468), we consider testing a hypothesis about a parameter based on a Student’s t-statistic based on least squares estimates for a fixed number of groups of the original sample. The merit of this approach is that no knowledge about the value of κ nor about the rate of convergence and the limiting distribution of the least squares estimator is required. We verify that the two-sided t-test is asymptotically a level α test whenever α≤5% for any κ≥2, which includes cases where the innovations have infinite variance. A simulation experiment suggests that the finite-sample properties of the test are quite good.

**Date:** 2020

**References:** Add references at CitEc

**Citations:** Track citations by RSS feed

**Downloads:** (external link)

http://hdl.handle.net/10.1080/07474938.2019.1580950 (text/html)

Access to full text is restricted to subscribers.

**Related works:**

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:taf:emetrv:v:39:y:2020:i:3:p:244-259

**Ordering information:** This journal article can be ordered from

http://www.tandfonline.com/pricing/journal/LECR20

**DOI:** 10.1080/07474938.2019.1580950

Access Statistics for this article

Econometric Reviews is currently edited by *Dr. Essie Maasoumi*

More articles in Econometric Reviews from Taylor & Francis Journals

Bibliographic data for series maintained by ().