Economics at your fingertips  

Finite-sample generalized confidence distributions and sign-based robust estimators in median regressions with heterogeneous dependent errors

Elise Coudin and Jean-Marie Dufour

Econometric Reviews, 2020, vol. 39, issue 8, 763-791

Abstract: We study the problem of estimating the parameters of a linear median regression without any assumption on the shape of the error distribution – including no condition on the existence of moments – allowing for heterogeneity (or heteroskedasticity) of unknown form, noncontinuous distributions, and very general serial dependence (linear and nonlinear). This is done through a reverse inference approach, based on a distribution-free sign-based testing theory, from which confidence sets and point estimators are subsequently generated. We propose point estimators, which have a natural association with confidence distributions. These estimators are based on maximizing test p-values and inherit robustness properties from the generating distribution-free tests. Both finite-sample and large-sample properties of the proposed estimators are established under weak regularity conditions. We show that they are median-unbiased (under symmetry and estimator unicity) and possess equivariance properties. Consistency and asymptotic normality are established without any moment existence assumption on the errors. A Monte Carlo study of bias and RMSE shows sign-based estimators perform better than LAD-type estimators in various heteroskedastic settings. We illustrate the use of sign-based estimators on an example of β-convergence of output levels across U.S. states.

Date: 2020
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

DOI: 10.1080/07474938.2020.1772568

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

Page updated 2020-10-08
Handle: RePEc:taf:emetrv:v:39:y:2020:i:8:p:763-791