Economics at your fingertips  

Bayesian semiparametric multivariate stochastic volatility with application

Martina Danielova Zaharieva, Mark Trede () and Bernd Wilfling ()

Econometric Reviews, 2020, vol. 39, issue 9, 947-970

Abstract: In this article, we establish a Cholesky-type multivariate stochastic volatility estimation framework, in which we let the innovation vector follow a Dirichlet process mixture (DPM), thus enabling us to model highly flexible return distributions. The Cholesky decomposition allows parallel univariate process modeling and creates potential for estimating high-dimensional specifications. We use Markov chain Monte Carlo methods for posterior simulation and predictive density computation. We apply our framework to a five-dimensional stock-return data set and analyze international stock-market co-movements among the largest stock markets. The empirical results show that our DPM modeling of the innovation vector yields substantial gains in out-of-sample density forecast accuracy when compared with the prevalent benchmark models.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link) (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

DOI: 10.1080/07474938.2020.1761152

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

Page updated 2022-01-04
Handle: RePEc:taf:emetrv:v:39:y:2020:i:9:p:947-970