EconPapers    
Economics at your fingertips  
 

Estimation of high-dimensional seemingly unrelated regression models

Lidan Tan, Khai Xiang Chiong and Hyungsik Roger Moon

Econometric Reviews, 2021, vol. 40, issue 9, 830-851

Abstract: In this article, we investigate seemingly unrelated regression (SUR) models that allow the number of equations (N) to be large and comparable to the number of the observations in each equation (T). It is well known that conventional SUR estimators, for example, the feasible generalized least squares estimator from Zellner (1962) does not perform well in a high-dimensional setting. We propose a new feasible GLS estimator called the feasible graphical lasso (FGLasso) estimator. For a feasible implementation of the GLS estimator, we use the graphical lasso estimation of the precision matrix (the inverse of the covariance matrix of the equation system errors) assuming that the underlying unknown precision matrix is sparse. We show that under certain conditions, FGLasso converges uniformly to GLS even when T N log N. We confirm these results through finite sample Monte-Carlo simulations.

Date: 2021
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2021.1889195 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:40:y:2021:i:9:p:830-851

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1080/07474938.2021.1889195

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2021-09-08
Handle: RePEc:taf:emetrv:v:40:y:2021:i:9:p:830-851