EconPapers    
Economics at your fingertips  
 

Optimal model averaging for divergent-dimensional Poisson regressions

Jiahui Zou, Wendun Wang, Xinyu Zhang and Guohua Zou

Econometric Reviews, 2022, vol. 41, issue 7, 775-805

Abstract: This paper proposes a new model averaging method to address model uncertainty in Poisson regressions, allowing the dimension of covariates to increase with the sample size. We derive an unbiased estimator of the Kullback–Leibler (KL) divergence to choose averaging weights. We show that when all candidate models are misspecified, the proposed estimate is asymptotically optimal by achieving the least KL divergence among all possible averaging estimators. In another situation where correct models exist in the model space, our method can produce consistent coefficient estimates. We apply the proposed techniques to study the determinants and predict corporate innovation outcomes measured by the number of patents.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2022.2047508 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:41:y:2022:i:7:p:775-805

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1080/07474938.2022.2047508

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2025-03-20
Handle: RePEc:taf:emetrv:v:41:y:2022:i:7:p:775-805