EconPapers    
Economics at your fingertips  
 

Model selection and model averaging for matrix exponential spatial models

Ye Yang, Osman Doğan and Suleyman Taspinar

Econometric Reviews, 2022, vol. 41, issue 8, 827-858

Abstract: In this paper, we focus on a model specification problem in spatial econometric models when an empiricist needs to choose from a pool of candidates for the spatial weights matrix. We propose a model selection (MS) procedure for the matrix exponential spatial specification (MESS), when the true spatial weights matrix may not be in the set of candidate spatial weights matrices. We show that the selection estimator is asymptotically optimal in the sense that asymptotically it is as efficient as the infeasible estimator that uses the best candidate spatial weights matrix. The proposed selection procedure is also consistent in the sense that when the data generating process involves spatial effects, it chooses the true spatial weights matrix with probability approaching one in large samples. We also propose a model averaging (MA) estimator that compromises across a set of candidate models. We show that it is asymptotically optimal. We further flesh out how to extend the proposed selection and averaging schemes to higher order specifications and to the MESS with heteroscedasticity. Our Monte Carlo simulation results indicate that the MS and MA estimators perform well in finite samples. We also illustrate the usefulness of the proposed MS and MA schemes in a spatially augmented economic growth model.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2022.2047507 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:41:y:2022:i:8:p:827-858

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20

DOI: 10.1080/07474938.2022.2047507

Access Statistics for this article

Econometric Reviews is currently edited by Dr. Essie Maasoumi

More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().

 
Page updated 2025-03-20
Handle: RePEc:taf:emetrv:v:41:y:2022:i:8:p:827-858