Indirect inference estimation of higher-order spatial autoregressive models
Yong Bao
Econometric Reviews, 2023, vol. 42, issue 3, 247-280
Abstract:
This paper proposes estimating parameters in higher-order spatial autoregressive models, where the error term also follows a spatial autoregression and its innovations are heteroskedastic, by matching the simple ordinary least squares estimator with its analytical approximate expectation, following the principle of indirect inference. The resulting estimator is shown to be consistent, asymptotically normal, simulation-free, and robust to unknown heteroskedasticity. Monte Carlo simulations demonstrate its good finite-sample properties in comparison with existing estimators. An empirical study of Airbnb rental prices in the city of Asheville illustrates that the structure of spatial correlation and effects of various factors at the early stage of the COVID-19 pandemic are quite different from those during the second summer. Notably, during the pandemic, safety is valued more and on-line reviews are valued much less.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07474938.2023.2178136 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:emetrv:v:42:y:2023:i:3:p:247-280
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/LECR20
DOI: 10.1080/07474938.2023.2178136
Access Statistics for this article
Econometric Reviews is currently edited by Dr. Essie Maasoumi
More articles in Econometric Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by ().