High-order accurate implicit finite difference method for evaluating American options
A. Mayo
The European Journal of Finance, 2004, vol. 10, issue 3, 212-237
Abstract:
A numerical method is presented for valuing vanilla American options on a single asset that is up to fourth-order accurate in the log of the asset price, and second-order accurate in time. The method overcomes the standard difficulty encountered in developing high-order accurate finite difference schemes for valuing American options; that is, the lack of smoothness in the option price at the critical boundary. This is done by making special corrections to the right-hand side of the differnce equations near the boundary, so they retain their level of accuracy. These corrections are easily evaluated using estimates of the boundary location and jump in the gamma that occurs there, such as those developed by Carr and Eaguet. Results of numerical experiments are presented comparing the method with more standard finite difference methods.
Keywords: American options; finite difference method (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/1351847032000168641 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:eurjfi:v:10:y:2004:i:3:p:212-237
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/REJF20
DOI: 10.1080/1351847032000168641
Access Statistics for this article
The European Journal of Finance is currently edited by Chris Adcock
More articles in The European Journal of Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().