Forecasting variance using stochastic volatility and GARCH
Björn Hansson () and
Peter Hördahl
The European Journal of Finance, 2005, vol. 11, issue 1, 33-57
Abstract:
This paper estimates the conditional variance of daily Swedish OMX-index returns with stochastic volatility (SV) models and GARCH models and evaluates the in-sample performance as well as the out-of-sample forecasting ability of the models. Asymmetric as well as weekend/holiday effects are allowed for in the variance, and the assumption that errors are Gaussian is released. Evidence is found of a leverage effect and of higher variance during weekends. In both in-sample and out-of-sample comparisons SV models outperform GARCH models. However, while asymmetry, weekend/holiday effects and non-Gaussian errors are important for the in-sample fit, it is found that these factors do not contribute to enhancing the forecasting ability of the SV models.
Keywords: Variance; stochastic volatility; GARCH models; forecasting ability; weekend/holiday effects (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/1351847021000025803 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:eurjfi:v:11:y:2005:i:1:p:33-57
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/REJF20
DOI: 10.1080/1351847021000025803
Access Statistics for this article
The European Journal of Finance is currently edited by Chris Adcock
More articles in The European Journal of Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().