EconPapers    
Economics at your fingertips  
 

Implications of market microstructure for realized variance measurement

Daniel Djupsjobacka

The European Journal of Finance, 2010, vol. 16, issue 1, 27-43

Abstract: Volatility measuring and estimation based on intra-day high-frequency data has grown in popularity during the last few years. A significant part of the research uses volatility and variance measures based on the sum of squared high-frequency returns. These volatility measures, introduced and mathematically justified in a series of papers by Andersen et al. [1999. (Understanding, optimizing, using and forecasting) realized volatility and correlation. Leonard N. Stern School Finance Department Working Paper Series, 99-061, New York University; 2000a. The distribution of realized exchange rate volatility. Journal of the American Statistical Association 96, no. 453: 42-55; 2000b. Exchange rate returns standardized by realized volatility are (nearly) Gaussian. Multinational Finance Journal 4, no. 3/4: 159-179; 2003. Modeling and forecasting realized volatility. NBER Working Paper Series 8160.] and Andersen et al. 2001a. Modeling and forecasting realized volatility. NBER Working Paper Series 8160., are referred to as 'realized variance'. From the theory of quadratic variations of diffusions, it is possible to show that realized variance measures, based on sufficiently frequently sampled returns, are error-free volatility estimates. Our objective here is to examine realized variance measures, where well-documented market microstructure effects, such as return autocorrelation and volatility clustering, are included in the return generating process. Our findings are that the use of squared returns as a measure for realized variance will lead to estimation errors on sampling frequencies adopted in the literature. In the case of return autocorrelation, there will be systematic biases. Further, we establish increased standard deviation in the error between measured and real variance as sampling frequency decreases and when volatility is non-constant.

Keywords: realized variance; realized volatility; high-frequency data; Monte Carlo simulation; market microstructure; autocorrelation; sampling frequency (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13518470902853376 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:eurjfi:v:16:y:2010:i:1:p:27-43

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/REJF20

DOI: 10.1080/13518470902853376

Access Statistics for this article

The European Journal of Finance is currently edited by Chris Adcock

More articles in The European Journal of Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:eurjfi:v:16:y:2010:i:1:p:27-43