Monte Carlo methods for pricing discrete Parisian options
Carole Bernard and
Phelim Boyle
The European Journal of Finance, 2011, vol. 17, issue 3, 169-196
Abstract:
The paper develops an efficient Monte Carlo method to price discretely monitored Parisian options based on a control variate approach. The paper also modifies the Parisian option design by assuming the option is exercised when the barrier condition is met rather than at maturity. We obtain formulas for this new design when the underlying is continuously monitored and develop an efficient Monte Carlo method for the discrete case. Our method can also be used for the case of multiple barriers. We use numerical examples to illustrate the approach and reveal important features of the different types of options considered. Some performance-based executive stock options include different tranches of discretely monitored Parisian options and we illustrate this with a practical example.
Keywords: Parisian options; Monte Carlo; discrete monitoring; control variate; early exercise; executive stock options (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13518470903448473 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:eurjfi:v:17:y:2011:i:3:p:169-196
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/REJF20
DOI: 10.1080/13518470903448473
Access Statistics for this article
The European Journal of Finance is currently edited by Chris Adcock
More articles in The European Journal of Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().