Estimating loss-given default through advanced credibility theory
Stefano Bonini and
Giuliana Caivano
The European Journal of Finance, 2016, vol. 22, issue 13, 1351-1362
Abstract:
The New Basel Accord allows internationally active banking organizations to calculate their credit risk capital requirements using an internal ratings based approach, subject to supervisory review. One of the modeling components is the loss-given default (LGD): it represents the credit loss for a bank when extreme events occur that influence the obligor ability to repay his debts to the bank. Among researchers and practitioners the use of statistical models such as linear regression, Tobit or decision trees is quite common in order to compute LGDs as a forecasting of historical losses. However, these statistical techniques do not seem to provide robust estimation and show low performance. These results could be driven by some factors that make differences in LGD, such as the presence and quality of collateral, timing of the business cycle, workout process management and M&A activity among banks. This paper evaluates an alternative method of modeling LGD using a technique based on advanced credibility theory typically used in actuarial modeling. This technique provides a statistical component to the credit and workout experts’ opinion embedded in the collateral and workout management process and improve the predictive power of forecasting. The model has been applied to an Italian Bank Retail portfolio represented by Overdrafts; the application of credibility theory provides a higher predictive power of LGD estimation and an out-of-time sample backtesting has shown a stable accuracy of estimates with respect to the traditional LGD model.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/1351847X.2013.870918 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:eurjfi:v:22:y:2016:i:13:p:1351-1362
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/REJF20
DOI: 10.1080/1351847X.2013.870918
Access Statistics for this article
The European Journal of Finance is currently edited by Chris Adcock
More articles in The European Journal of Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().