Gaussian models for Euro high grade government yields
Marco Realdon
The European Journal of Finance, 2017, vol. 23, issue 15, 1468-1511
Abstract:
This paper tests affine, quadratic and Black-type Gaussian models on Euro area triple A Government bond yields for maturities up to 30 years. Quadratic Gaussian models beat affine Gaussian models both in-sample and out-of-sample. A Black-type model best fits the shortest maturities and the extremely low yields since 2013, but worst fits the longest maturities. Even for quadratic models we can infer the latent factors from some yields observed without errors, which makes quasi-maximum likelihood (QML) estimation feasible. New specifications of quadratic models fit the longest maturities better than does the ‘classic’ specification of Ahn et al. [2002. ‘Quadratic Term Structure Models: Theory and Evidence.’ The Review of Financial Studies 15 (1): 243–288], but the opposite is true for the shortest maturities. These new specifications are more suitable to QML estimation. Overall quadratic models seem preferable to affine Gaussian models, because of superior empirical performance, and to Black-type models, because of superior tractability. This paper also proposes the vertical method of lines (MOL) to solve numerically partial differential equations (PDEs) for pricing bonds under multiple non-independent stochastic factors. ‘Splitting’ the PDE drastically reduces computations. Vertical MOL can be considerably faster and more accurate than finite difference methods.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/1351847X.2016.1173082 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:eurjfi:v:23:y:2017:i:15:p:1468-1511
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/REJF20
DOI: 10.1080/1351847X.2016.1173082
Access Statistics for this article
The European Journal of Finance is currently edited by Chris Adcock
More articles in The European Journal of Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().