The dynamics of returns predictability in cryptocurrency markets
Daniele Bianchi,
Massimo Guidolin and
Manuela Pedio
The European Journal of Finance, 2023, vol. 29, issue 6, 583-611
Abstract:
In this paper, we take a forecasting perspective and compare the information content of a set of market risk factors, cryptocurrency-specific predictors, and sentiment variables for the returns of cryptocurrencies vs traditional asset classes. To this aim, we rely on a flexible dynamic econometric model that not only features time-varying coefficients, but also allows for the entire forecasting model to change over time to capture the time variation in the exposures of major digital currencies to the predictive variables. Besides, we investigate whether the inclusion of cryptocurrencies in an already diversified portfolio leads to additional economic gains. The main empirical results suggest that cryptocurrencies are not systematically predicted by stock market factors, precious metal commodities or supply factors. On the contrary, they display a time-varying but significant exposure to investors' attention. In addition, also because of a lack of predictability compared to traditional asset classes, cryptocurrencies lead to realized expected utility gains for a power utility investor.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/1351847X.2022.2084343 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:eurjfi:v:29:y:2023:i:6:p:583-611
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/REJF20
DOI: 10.1080/1351847X.2022.2084343
Access Statistics for this article
The European Journal of Finance is currently edited by Chris Adcock
More articles in The European Journal of Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().