Ascertaining price formation in cryptocurrency markets with machine learning
Fan Fang,
Waichung Chung,
Carmine Ventre,
Michail Basios,
Leslie Kanthan,
Lingbo Li and
Fan Wu
The European Journal of Finance, 2024, vol. 30, issue 1, 78-100
Abstract:
The cryptocurrency market is amongst the fastest-growing of all the financial markets in the world. Unlike traditional markets, such as equities, foreign exchange and commodities, cryptocurrency market is considered to have larger volatility and illiquidity. This paper is inspired by the recent success of using machine learning for stock market prediction. In this work, we analyze and present the characteristics of the cryptocurrency market in a high-frequency setting. In particular, we applied a machine learning approach to predict the direction of the mid-price changes on the upcoming tick. We show that there are universal features amongst cryptocurrencies which lead to models outperforming asset-specific ones. We also show that there is little point in feeding machine learning models with long sequences of data points; predictions do not improve. Furthermore, we solve the technical challenge to design a lean predictor, which performs well on live data downloaded from crypto exchanges. A novel retraining method is defined and adopted towards this end. Finally, the trade-off between model accuracy and frequency of training is analyzed in the context of multi-label prediction. Overall, we demonstrate that promising results are possible for cryptocurrencies on live data, by achieving a consistent $ 78\% $ 78% accuracy on the prediction of the mid-price movement on live exchange rate of Bitcoins vs. US dollars.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/1351847X.2021.1908390 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:eurjfi:v:30:y:2024:i:1:p:78-100
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/REJF20
DOI: 10.1080/1351847X.2021.1908390
Access Statistics for this article
The European Journal of Finance is currently edited by Chris Adcock
More articles in The European Journal of Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().