EconPapers    
Economics at your fingertips  
 

Stable and bias-corrected estimation for nonparametric regression models

Lu Lin and Feng Li

Journal of Nonparametric Statistics, 2008, vol. 20, issue 4, 283-303

Abstract: It is well known that in nonparametric regression setting, the common kernel estimators are sensitive to bandwidth and can not achieve a satisfactory convergence rate, especially for multivariate cases. To improve nonparametric estimation in the sense of both selection of bandwidth and convergence rate, this paper proposes a two-stage (or three-stage) regression estimation by combining nonparametric regression with parametric regression. The optimal design conditions, including the optimal bandwidth, are obtained. The newly proposed estimator has a simple structure and can achieve a smaller mean square error without use of the higher order kernel. Even if the prior selections of nonparametric estimation are not optimal (i.e. the smooth parameter is not optimally chosen), the new two-stage estimator still has a satisfactory convergence rate. This means that the newly proposed estimator is robust to the selection of bandwidth and then is a practical method. This new method is also suitable for general nonparametric regression models regardless of the dimension of explanatory variable and the structure assumption on regression function.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485250802018253 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:20:y:2008:i:4:p:283-303

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485250802018253

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:20:y:2008:i:4:p:283-303