EconPapers    
Economics at your fingertips  
 

Hazard function given a functional variable: Non-parametric estimation under strong mixing conditions

Alejandro Quintela-Del-Río

Journal of Nonparametric Statistics, 2008, vol. 20, issue 5, 413-430

Abstract: We study here the kernel type, non-parametric estimation of the conditional hazard function, based on a sample of functional dependent data. The almost complete convergence of the conditional hazard estimate is easily derived using the properties referred by Ferraty et al for the conditional distribution and conditional density estimates. The asymptotic bias and variances of the three estimates (conditional density, distribution and hazard) are calculated and compared with the results obtained in p-dimensional non-parametric kernel estimation. The asymptotic normality is established for the three mentioned estimates. Finally, an application to an earthquake data set is made.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485250802159297 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:20:y:2008:i:5:p:413-430

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485250802159297

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:20:y:2008:i:5:p:413-430