Estimating and clustering curves in the presence of heteroscedastic errors
Nicoleta Serban
Journal of Nonparametric Statistics, 2008, vol. 20, issue 7, 553-571
Abstract:
The technique introduced in this paper is a means for estimating and discovering underlying patterns for a large number of curves observed with heteroscedastic errors. Therefore, both the mean and the variance functions of each curve are assumed unknown and varying over time. The method consists of a series of steps. We transform using an orthonormal basis of functions in L2. In the transform domain, the non-parametric regression is reduced to a means model. To estimate the means in the transform domain, we consider the class of linear or modulation estimators and proceed as in Beran and Dümbgen (R. Beran and L. Dümbgen, Modulation of estimators and confidence sets, Ann. Stat. 26(5) (1998), pp. 1826–1856.) by minimising the Stein's unbiased risk estimate. By minimising the risk over a nested subset selection of modulators, we reduce the dimensionality of the means space. We show that in the transform space, the risk estimate is asymptotically optimal in the Pinsker's minimax sense over Sobolev ellipsoids under heteroscedastic errors. Coefficient estimation and dimensionality reduction via optimal risk estimation is essential for accurate clustering membership estimation. We illustrate our technique by estimating and clustering a large number of curves both within a synthetic example and within a specific application. In this application, we analyse the research and development expenditure of a subset of companies in the Compustat Global database. We show that our method compares favourably to two alternative approaches.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485250802348742 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:20:y:2008:i:7:p:553-571
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485250802348742
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().