Nonparametric -quantile regression using penalised splines
Monica Pratesi,
M. Ranalli and
Nicola Salvati
Journal of Nonparametric Statistics, 2009, vol. 21, issue 3, 287-304
Abstract:
Quantile regression investigates the conditional quantile functions of a response variable in terms of a set of covariates. M-quantile regression extends this idea by a ‘quantile-like’ generalisation of regression based on influence functions. In this work, we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to have a certain parametric form, but can be left undefined and estimated from the data. Penalised splines are employed to estimate them. This choice makes it easy to move to bivariate smoothing and semiparametric modelling. An algorithm based on iteratively reweighted penalised least squares to actually fit the model is proposed. Quantile crossing is addressed using an a posteriori adjustment to the function fits following He [1]. Simulation studies show the finite sample properties of the proposed estimation technique.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485250802638290 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:21:y:2009:i:3:p:287-304
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485250802638290
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().