Weighted least squares method for censored linear models
Wanrong Liu and
Xuewen Lu
Journal of Nonparametric Statistics, 2009, vol. 21, issue 7, 787-799
Abstract:
For estimation of linear models with randomly censored data, a class of data transformations is used to construct synthetic data. It is shown that the conditional variance of the synthetic data depends on the covariates in the model regardless of the homoscedasticity of the error. Therefore, linear models based on the synthetic data are always heteroscedastic models. To improve efficiency, we propose a weighted least squares (WLS) method, where the conditional variance of the synthetic data is estimated nonparametrically, then the standard WLS principle is applied to the synthetic data in the estimation procedure. The resultant estimator is asymptotically normal and the limiting variance is estimated using the plug-in method. In general, the proposed method improves the existing synthetic data methods for censored linear models, and gains more efficiency. For the censored heteroscedastic linear models, where the Buckley–James (BJ) and rank-based methods cannot be used since the condition of homoscedastic errors is violated, the new method provides a solution for better estimation. Monte Carlo simulations are conducted to compare the proposed method with the unweighted least squares method and the BJ method under different error conditions.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485250902795636 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:21:y:2009:i:7:p:787-799
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485250902795636
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().