Seasonality analysis of time series in partial linear models
Q. Shao
Journal of Nonparametric Statistics, 2009, vol. 21, issue 7, 827-837
Abstract:
Seasonality analysis is one of the classic topics in time series. This paper studies techniques for seasonality analysis when the trend function is unspecified. The asymptotic properties of the semiparametric estimators are derived, and an estimation algorithm is provided. The techniques are applied to making inference for the monthly global land–ocean temperature anomaly indexes.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485250903108391 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:21:y:2009:i:7:p:827-837
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485250903108391
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().