EconPapers    
Economics at your fingertips  
 

Improving Sheather and Jones’ bandwidth selector for difficult densities in kernel density estimation

J. Liao, Yujun Wu and Yong Lin

Journal of Nonparametric Statistics, 2010, vol. 22, issue 1, 105-114

Abstract: Kernel density estimation is a widely used statistical tool and bandwidth selection is critically important. The Sheather and Jones’ (SJ) selector [A reliable data-based bandwidth selection method for kernel density estimation, J. R. Stat. Soc. Ser. B 53 (1991), pp. 683–690] remains the best available data-driven bandwidth selector. It can, however, perform poorly if the true density deviates too much in shape from normal. This paper first develops an alternative selector by following ideas in Park and Marron [On the use of pilot estimators in bandwidth selection, Nonparametr. Stat. 1 (1992), pp. 231–240] to reduce the impact of the normal reference density. The selector can bring drastic improvement to less smooth densities that the SJ selector has difficulty with, but may be slightly worse off otherwise. We then propose to combine the alternative selector and SJ selector by using the smaller of the two bandwidths, which has the effect of automatically picking the better one for a particular density. In our extensive simulation, study using the 15 benchmark densities in Marron and Wand [Exact mean integrated squared error, Ann. Statist. 20 (1992), pp. 712–736], the combined selector significantly improves the SJ selector for 5 difficult densities and retains the superior performance of the SJ selector for the other 10. A ready-to-use R function is provided.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485250903194003 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:22:y:2010:i:1:p:105-114

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485250903194003

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:22:y:2010:i:1:p:105-114