Quantile estimation for discrete data via empirical likelihood
Jien Chen and
Nicole Lazar
Journal of Nonparametric Statistics, 2010, vol. 22, issue 2, 237-255
Abstract:
Quantile estimation for discrete distributions has not been well studied, although discrete data are common in practice. Under the assumption that data are drawn from a discrete distribution, we examine the consistency of the maximum empirical likelihood estimator (MELE) of the pth population quantile θp, with the assistance of a jittering method and results for continuous distributions. The MELE may or may not be consistent for θp, depending on whether or not the underlying distribution has a plateau at the level of p. We propose an empirical likelihood-based categorisation procedure which not only helps in determining the shape of the true distribution at level p but also provides a way of formulating a new estimator that is consistent in any case. Analogous to confidence intervals in the continuous case, the probability of a correct estimate (PCE) accompanies the point estimator. Simulation results show that PCE can be estimated using a simple bootstrap method.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485250903301525 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:22:y:2010:i:2:p:237-255
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485250903301525
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().