Distribution function estimation by constrained polynomial spline regression
Lan Xue and
Jing Wang
Journal of Nonparametric Statistics, 2010, vol. 22, issue 4, 443-457
Abstract:
A smooth monotone polynomial spline (PS) estimator is proposed for the cumulative distribution function. The proposed method applies a constrained PS regression to smooth the empirical distribution function, while simultaneously ensures monotonicity by imposing a set of linear constraints on the coefficients of the PS functions. This feature is not shared by its kernel counterpart in [Cheng, M.Y., and Peng, L. (2002), ‘Regression Modeling for Nonparametric Estimation of Distribution and Quantile Functions’, Statistica Sinica, 12, 1043–1060], as the kernel estimator is not necessarily monotone. Under mild assumptions, both L2 and uniform convergence rates are obtained. Our simulation studies show that the proposed estimator has better finite sample performance than the simple empirical distribution function. We also illustrate the use of the proposed method by analysing two real data examples.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485250903336802 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:22:y:2010:i:4:p:443-457
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485250903336802
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().