EconPapers    
Economics at your fingertips  
 

Finite-sample consistency of combination-based permutation tests with application to repeated measures designs

Fortunato Pesarin and Luigi Salmaso

Journal of Nonparametric Statistics, 2010, vol. 22, issue 5, 669-684

Abstract: In several application fields, e.g. genetics, image and functional analysis, several biomedical and social experimental and observational studies, etc. it may happen that the number of observed variables is much larger than that of subjects. It can be proved that, for a given and fixed number of subjects, when the number of variables increases and the noncentrality parameter of the underlying population distribution increases with respect to each added variable, then power of multivariate permutation tests based on Pesarin's combining functions [Pesarin, F. (2001), Multivariate Permutation Tests with Applications in Biostatistics, New York: Wiley, Chichester] is monotonically increasing. These results confirm and extend those presented by [Blair, Higgins, Karniski and Kromrey (1994), ‘A Study of Multivariate Permutation Tests which May Replace Hotelling's T2 Test in Prescribed Circumstances’, Multivariate Behavioral Research 29, 141–163]. Moreover, they allow us to introduce the property of finite-sample consistency for those kinds of combination-based permutation tests. Sufficient conditions are given in order that the rejection rate converges to one, for fixed sample sizes at any attainable α -values, when the number of variables diverges. A simulation study and a real case study are presented.

Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485250902807407 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:22:y:2010:i:5:p:669-684

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485250902807407

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:22:y:2010:i:5:p:669-684