An ordinary differential equation-based solution path algorithm
Yichao Wu
Journal of Nonparametric Statistics, 2011, vol. 23, issue 1, 185-199
Abstract:
Efron, Hastie, Johnstone, and Tibshirani [(2004), ‘Least Angle Regression (with discussions)’, The Annals of Statistics, 32, 409–499] proposed least angle regression (LAR), a solution path algorithm for the least squares regression. They pointed out that a slight modification of the LAR gives the LASSO [Tibshirani, R. (1996), ‘Regression Shrinkage and Selection Via the Lasso’, Journal of the Royal Statistical Society, Series B, 58, 267–288] solution path. However, it is largely unknown how to extend this solution path algorithm to models beyond the least squares regression. In this work, we propose an extension of the LAR for generalised linear models and the quasi-likelihood model by showing that the corresponding solution path is piecewise given by solutions of ordinary differential equation (ODE) systems. Our contribution is twofold. First, we provide a theoretical understanding on how the corresponding solution path propagates. Second, we propose an ODE-based algorithm to obtain the whole solution path.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2010.490584 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:23:y:2011:i:1:p:185-199
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2010.490584
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().