Single-index coefficient models for nonlinear time series
Tracy Wu,
Haiqun Lin and
Yan Yu
Journal of Nonparametric Statistics, 2011, vol. 23, issue 1, 37-58
Abstract:
The single-index coefficient model, where the coefficients are functions of an index of a covariate vector, is a powerful tool for modelling nonlinearity in multivariate estimation. By reducing the covariate vector to an index which is usually a linear combination of covariates, the single-index coefficient model overcomes the well-known phenomenon of ‘curse-of-dimensionality’. We estimate the univariate varying coefficients with penalised splines (PS). An iterative data-driven algorithm is developed, adaptively selecting the index. The algorithm is based on the observation that given an estimated index, the varying-coefficient model using PS is essentially a linear ridge regression with spline bases. Our experiments show that the proposed algorithm gives rapid convergence. We also establish large sample properties assuming fixed number of knots. The usual jointly stationary assumption for dependent data is relaxed with weaker size requirements for either φ-mixing or α-mixing. Finally, we present an application to a gross national product data set and a simulated example.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2010.497554 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:23:y:2011:i:1:p:37-58
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2010.497554
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().