EconPapers    
Economics at your fingertips  
 

An approximation procedure of quantiles using an estimation of kernel method for quality control

Vesa Hasu, Kalle Halmevaara and Heikki Koivo

Journal of Nonparametric Statistics, 2011, vol. 23, issue 2, 399-413

Abstract: Testing measurements against quantiles of their distributions is a basic quality control technique. Unfortunately, the methods for the empirical quantile computation require usually ordered observations, which is not feasible for on-line use in large systems. This paper proposes a procedure for approximation of quantiles from a random sample of observations. The procedure is applicable on-line without exhaustive database searches, and it enables also approximation of high quantiles and nonstationary distributions. Our approach is based on using a linear approximation of the kernel smoothed quantile estimation for the cumulative distribution function. We apply the procedure in the quality control of temperature measurement with a tail frequency estimation approach.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2010.526210 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:23:y:2011:i:2:p:399-413

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2010.526210

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:23:y:2011:i:2:p:399-413