An extension of the Koziol–Green model under dependent censoring
Auguste Gaddah and
Roel Braekers
Journal of Nonparametric Statistics, 2011, vol. 23, issue 2, 439-453
Abstract:
In survival analysis, the classical Koziol–Green model under random censorship is commonly used for informative censoring. We propose in this paper an extension of this model in which we derive a nonparametric estimator for the distribution function of a survival time under two types of informative censoring. For the first type of informative censoring, we assume that the censoring time depends on the survival time through the expression of their joint distribution by an Archimedean copula. For the second type of informative censoring, we assume that the marginal distribution of the censoring time is a function of the marginal distribution of the survival time where this function is found through a section of a known copula function on the observed lifetime and the censoring indicator. We prove in this paper the uniform consistency of the new estimator and show the weak convergence of the associated process. Afterwards, we give some finite sample simulation results and illustrate this estimator on a real-life data set.
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2010.515682 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:23:y:2011:i:2:p:439-453
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2010.515682
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().