Smooth density estimation with moment constraints using mixture distributions
Ani Eloyan and
Sujit Ghosh
Journal of Nonparametric Statistics, 2011, vol. 23, issue 2, 513-531
Abstract:
Statistical analysis often involves the estimation of a probability density based on a sample of observations. A commonly used nonparametric method for solving this problem is the kernel-based method. The motivation is that any continuous density can be approximated by a mixture of densities with appropriately chosen bandwidths. In many practical applications, we may have specific information about the moments of the density. A nonparametric method using a mixture of known densities is proposed that conserves a given set of moments. A modified expectation–maximisation algorithm for estimating the weights of the mixture density is then developed. The proposed method also obtains an estimate of the number of components in the mixture needed for optimal approximation. The proposed method is compared with two popular density estimation methods using simulated data and it is shown that the proposed estimate outperforms the others. The method is then illustrated by applying it to several real-data examples.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2010.532554 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:23:y:2011:i:2:p:513-531
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2010.532554
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().