Student Prize Award
The Editors
Journal of Nonparametric Statistics, 2011, vol. 23, issue 2, 581-581
Abstract:
P-splines regression is a flexible smoothing tool in which the starting point is a highly parameterised model and overfitting is prevented by introducing a penalty function. A common form of the penalty term is obtained by taking a prespecified order of differences of adjacent coefficients. This paper deals with a data-driven choice of the differencing order, as such allowing for the fit to adapt automatically to the (unknown) degree of smoothness of the underlying function. The selection procedure is based on Akaike's information criterion. The study is carried out in a broad framework of generalised linear and generalised additive models. We provide the necessary theoretical support for the selection procedure, and investigate its performance via simulations. We illustrate the use of such a selection procedure on some real data examples. The discussed examples include generalised normal, binomial and Poisson regression models.
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2011.573627 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:23:y:2011:i:2:p:581-581
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2011.573627
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().