Randomised -values and nonparametric procedures in multiple testing
Joshua Habiger and
Edsel Peña
Journal of Nonparametric Statistics, 2011, vol. 23, issue 3, 583-604
Abstract:
The validity of many multiple hypothesis testing procedures for false discovery rate (FDR) control relies on the assumption that P-value statistics are uniformly distributed under the null hypotheses. However, this assumption fails if the test statistics have discrete distributions or if the distributional model for the observables is misspecified. A stochastic process framework is introduced that, with the aid of a uniform variate, admits P-value statistics to satisfy the uniformity condition even when test statistics have discrete distributions. This allows nonparametric tests to be used to generate P-value statistics satisfying the uniformity condition. The resulting multiple testing procedures are therefore endowed with robustness properties. Simulation studies suggest that nonparametric randomised test P-values allow for these FDR methods to perform better when the model for the observables is nonparametric or misspecified.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2010.482154 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:23:y:2011:i:3:p:583-604
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2010.482154
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().