A new statistical depth function with applications to multimodal data
W. Lok and
Stephen Lee
Journal of Nonparametric Statistics, 2011, vol. 23, issue 3, 617-631
Abstract:
We propose a new statistical depth function based on interpoint distances, which has the distinct property of respecting multimodality in data configurations. This property proves to be especially relevant to many inference problems including confidence region construction, classification, tests for equality of populations, p-value computation, etc. With specification of an appropriate interpoint distance, our depth function also applies to infinite-dimensional data. A number of examples are used to illustrate the diverse applicability of our proposed depth function in different problem settings, where the conventional centre-outward ordering depth functions are found to be inadequate.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2011.553953 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:23:y:2011:i:3:p:617-631
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2011.553953
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().